2,267 research outputs found

    Non-steady relaxation and critical exponents at the depinning transition

    Get PDF
    We study the non-steady relaxation of a driven one-dimensional elastic interface at the depinning transition by extensive numerical simulations concurrently implemented on graphics processing units (GPUs). We compute the time-dependent velocity and roughness as the interface relaxes from a flat initial configuration at the thermodynamic random-manifold critical force. Above a first, non-universal microscopic time-regime, we find a non-trivial long crossover towards the non-steady macroscopic critical regime. This "mesoscopic" time-regime is robust under changes of the microscopic disorder including its random-bond or random-field character, and can be fairly described as power-law corrections to the asymptotic scaling forms yielding the true critical exponents. In order to avoid fitting effective exponents with a systematic bias we implement a practical criterion of consistency and perform large-scale (L~2^{25}) simulations for the non-steady dynamics of the continuum displacement quenched Edwards Wilkinson equation, getting accurate and consistent depinning exponents for this class: \beta = 0.245 \pm 0.006, z = 1.433 \pm 0.007, \zeta=1.250 \pm 0.005 and \nu=1.333 \pm 0.007. Our study may explain numerical discrepancies (as large as 30% for the velocity exponent \beta) found in the literature. It might also be relevant for the analysis of experimental protocols with driven interfaces keeping a long-term memory of the initial condition.Comment: Published version (including erratum). Codes and Supplemental Material available at https://bitbucket.org/ezeferrero/qe

    Representative galaxy age-metallicity relationships

    Get PDF
    The ongoing surveys of galaxies and those for the next generation of telescopes will demand the execution of high-CPU consuming machine codes for recovering detailed star formation histories (SFHs) and hence age-metallicity relationships (AMRs). We present here an expeditive method which provides quick-look AMRs on the basis of representative ages and metallicities obtained from colour-magnitude diagram (CMD) analyses. We have tested its perfomance by generating synthetic CMDs for a wide variety of galaxy SFHs. The representative AMRs turn out to be reliable down to a magnitude limit with a photometric completeness factor higher than \sim 85 per cent, and trace the chemical evolution history for any stellar population (represented by a mean age and an intrinsic age spread) with a total mass within ~ 40 per cent of the more massive stellar population in the galaxy.Comment: 12 pages, 11 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The age-metallicity relationship in the Fornax spheroidal dwarf galaxy

    Get PDF
    We produce a comprehensive field star age-metallicity relationship (AMR) from the earliest epoch until ~ 1 Gyr ago for three fields in the Fornax dSph galaxy by using VI photometric data obtained with FORS1 at the VLT. We find that the innermost one does not contains dominant very old stars (age > 12 Gyr), whereas the relatively outer field does not account for representative star field populations younger than ~ 3 Gyr. When focusing on the most prominent stellar populations, we find that the derived AMRs are engraved by the evidence of a outside-in star formation process. The studied fields show bimodal metallicity distributions peaked at [Fe/H] = (-0.95 +- 0.15) dex and (-1.15 or -1.25 +- 0.05) dex, respectively, but only during the first half of the entire galaxy lifetime. Furthermore, the more metal-rich population appears to be more numerous in the outer fields, while in the innermost Fornax field the contribution of both metallicity populations seems to be similar. We also find that the metallicity spread ~ 6 Gyr ago is remarkable large, while the intrinsic metallicity dispersion at ~ 1-2 Gyr results smaller than that for the relatively older generations of stars. We interpret these outcomes as a result of a possible merger of two galaxies that would have triggered a star formation bursting process that peaked between ~ 6 and 9 Gyr ago, depending on the position of the field in the galaxy.Comment: 7 pages, 5 figures, MNRAS, in pres

    Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    Get PDF
    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2\arcsec~to the north-east and 1\arcsec~to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1\farcs45±\pm0\farcs04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reffr_{\rm eff}\sim 9\arcsec). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18%±818 \% \pm 8 \% within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.Comment: 12 pages, 12 Figures, 4 Tables. Accepted in MNRA

    Magnetic domain wall creep and depinning: A scalar field model approach

    Get PDF
    Magnetic domain wall motion is at the heart of new magnetoelectronic technologies and hence the need for a deeper understanding of domain wall dynamics in magnetic systems. In this context, numerical simulations using simple models can capture the main ingredients responsible for the complex observed domain wall behavior. We present a scalar field model for the magnetization dynamics of quasi-two-dimensional systems with a perpendicular easy axis of magnetization which allows a direct comparison with typical experimental protocols, used in polar magneto-optical Kerr effect microscopy experiments. We show that the thermally activated creep and depinning regimes of domain wall motion can be reached and the effect of different quenched disorder implementations can be assessed with the model. In particular, we show that the depinning field increases with the mean grain size of a Voronoi tessellation model for the disorder.Fil: Caballero, Nirvana Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Ferrero, Ezequiel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Curiale, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Jeudy, Vincent. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Université Paris–Saclay; FranciaFil: Bustingorry, Sebastián. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    A feature selection method based on Shapley values robust to concept shift in regression

    Full text link
    Feature selection is one of the most relevant processes in any methodology for creating a statistical learning model. Generally, existing algorithms establish some criterion to select the most influential variables, discarding those that do not contribute any relevant information to the model. This methodology makes sense in a classical static situation where the joint distribution of the data does not vary over time. However, when dealing with real data, it is common to encounter the problem of the dataset shift and, specifically, changes in the relationships between variables (concept shift). In this case, the influence of a variable cannot be the only indicator of its quality as a regressor of the model, since the relationship learned in the traning phase may not correspond to the current situation. Thus, we propose a new feature selection methodology for regression problems that takes this fact into account, using Shapley values to study the effect that each variable has on the predictions. Five examples are analysed: four correspond to typical situations where the method matches the state of the art and one example related to electricity price forecasting where a concept shift phenomenon has occurred in the Iberian market. In this case the proposed algorithm improves the results significantly
    corecore